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Abstract

This report presents an +image method algorithm for the
derivation of point scurces of elastostatics in multi-layered mediz

assuming the infinite space point source is known. Specific cases

have been worked out and shown to coincide with well known

solutions in the literature.
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Introduction

The +importance of point sources (Green's functions are point
sources) for some given (linear) governing differential equations
and boundary conditions lies in two main reasons. First, any
Tocalized process when viewed from a sufficient distance can be
modelled as some suitably chosen point sources. Second, Green's
functions can be used to reframe the governing differential
equations and boundary conditions in an integral egquation form; the
integral equation form can, for example, be used as the basis for
numerically analyzing a large class of problems using the boundary

element method.

This paper presents an algorithm for the derivation of point
sources of elastostatics in multi-layered media assuming the point
source in infinite space is known. The method is similar to the
image method that is familiar when deriving Green's functions in
plane lavered media where there is only one unknown scalar field in
the governing equations such as in temperature conduction,
potential flow and electrostatics problems. The algorithm is then
used to derive the Green's functions for any point source in a
region consisting of an elastic layer perfectly bonded to two

elastic halfspaces.

Background

There are many known Green's functions for halfspace problems
in elastostatics. Most of the known Green's functions are
specialized for a single halfspace having a stress free surface (a
special case of bonded elastic halfspaces when one of the regions
has zero rigidity). We will first briefly survey some of these
known solutions with occasional comments on the method of

derivation, then we will discuss some of the analytic methods used
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“o derive Green's functions in multilayered halfspaces, and mention

a few known results for layered svstems with some comments.

The most used point source solutions are the point force, the
dislocation and the nuclei of strain (or double couple) solutionsz.
The point force sclution for 2-D plane problems in a halfspace with
& free surface (Mellan 1222), 2-D problem in & halfspace with a
free surface (Mindldin 1926) and 2-D problem in bonded slastic
halfspaces (Rongved 1955) are known. Rongved obtained the Green's
function through the use of the Papkovich-Neuber potentials and
argumerts from bharmonic analysis; the resulting solution Jg in the
form of the sum of a point force solution in infinite space and
some point sources at the image point with respect to the interface

plane.

The screw dislocation (e.g. Rybicki 1971) and edge dislocation
(e.g. Freund and Barnett (1976a.,b) presented it in a convenient
form) for a halfspace with a free surface and a general dislocation
1ine dintersecting a free surfacs (Yoffe 1961) are also known. The
screw dislocation problem is obtained by the method of images
(since there is only one field variable), while Freund and Barnett
sclved the edge dislocation problem through the use of complex

analysis and the Mushkelishvili potentials.

There are six nucleii of strain sources. The solution to the
first (double couple in & plane parallel to the free surface) was
given by Steketee (1958), the rsmaining five sources were given by
Maruyama (1964). Maruyama used image nucleii of strain sources to
cancel the tangential component of the surface traction on the free
surface. He then used the Boussinesg solution (in Galerkin vector
representation) and the remaining normal tractions on the free

urface in a Hankel/Fourier transformed space to obtain the rest of
he field

s
t afterwhich he transformed the solution back to real

6)




space. This procedure is highly specific to half space problems
with a free surface and cannot be generalized to multiple lavered
systems. We will he%t consider the known technigues to

systematically treat sources in multiple layered media.

2 systematic formulation for the derivation of the fields du

i1

to 2-D sources in a layered halfspace was presented by Ben~Menahem
and Singh (1868) and later refined by Singh (1870) and
independently by Sato (1971). The formulation makes use of the
analogue of Hansen's eigenvector expansion for electromagnetic
problems (1923%) applied to elastostatic and dynamic problems,
combined with the Haskell-Thompson transfer matrix technigue and
the Pekeris (1885) 'source condition’' at the level of the
discontinuity. The formulation leadsz to a solution for the field

variables of the form:

o
s
S a KT exp(p_kz)
Lo ® s

-
- W

.. u, = J {(kr K 1
1y Y - (k) d (1)
7 _klexp(s kz
q_nbn G
O W
where
as, pS, 1q, Gq are constants dependent on the +indices s
and g
Jp is Bessel's function of the first kind and
of order p
" iz the radial (cylindrical) coordinate

N
-t
0
t
-y
o

ation variable

al (
z cylindrical coordinate
k is an integr

In the above irtegrals, a.'s and vﬁ's may also depend on both

5
the elasztic properties of the half space and the lavyer.



Sato and Matsu'ura (1873) and Jovanovich et al1. (1874 a,b)
made use of the above mentioned formulation to calculate surface
deformations by numerically integrating the ensuing expressions.
Such evaluations regquire special numerical techniques and
significant amounts of computational effort. Furthermore, no field
values were computed inside the layer or halfspace. To accomplish
such evaluations requires significantly more effort (both 1in
further algebraic manipulations and in computations and special
numerical treatments); this observation is especially true for
field points close to the source point. The importance of having
the field variables being available everywhere occurs when a
boundary element/integral equation formulation for processes
occuring in a region consisting of such multi-layered media is

reguired.

A formulation in the same spirit as the Ben-Menahem and Singh
formulation for multi-layered 2-D problems using the Airy stress
function was presented by Singh and Garg (1985). Although the
original formulatior iz applicable to 3-D, 2-D and antiplane

problems, the specialized 2-D formulation is less complex.

Simpler but more specialized point source solutions in
multi-layered media are available. For example, Rybicki (1971)
presented the solution to a screw dislocation (can be specialized
from his expressions) in a region consisting of an elastic layer
with a free surface and perfectly bonded to an elastic halfspace.
Rybicki used the method of images to derive his solution. Rundle
and Jackson (1877) presented an approximate solution for a 3-D
double couple source parallel to the free surface in a region
consisting of an elastic layer perfectly bonded to an elastic
halfspace. The approximate solution was obtained by using
Steketee's 1958 solution combined with the use of an image method
(using Rybicki's techrnique) on the "antiplane" part of the point

source being considered.
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Rundle and Jackson compared their solution for the surface
deformations to that obtained by the direct integration of the
improper +integrals of Jovannovich et al. and found errors up to 14%
while varying the thickness of the plate and the location of the

source: however, the errors are less than 5% for the parameteric
in

ot

values they neesd heir specific application. We note that they
take the rigidity contrast between the halfspace and elastic layer

to be 10 to 1, a choice that would favor their approximation.

Rundle and Jackson also obtained the (approximate) response of
the point source they considered with a viscoelastic instead of an
elagtic halfspace through the use of the correspondence principle.
The direct application of the correspondence principle to their
elastic solution is poszible because the material parameters are
kept seperate from the geometric coordinates (in the form of a sum
of material parameters multiplied by a function of the
coordinates). This procedure is not directly applicable to the
solution presented “n the form of improper integrals (1) because
the materia’l parameters and the geometric coordinates are

intermixed in the denominator of the integrand.

Finally, we mention the existence of an image method for
perfectly bonded elastic halfspaces in terms of the
Papkovich-Neuber potentials (Aderogba 1977). Aderogba presents the
algorithm for obtaining the four image potentials which involves
multiple integrations with respect tc the coordinate perpendicular
te the interface plane and differentiation with respect to al
three coordinates. The algorithm we present in this paper involves
2 potentials only, and only differentiation of the potentials with
respect to the coordinate perpendicular to the interface plane (asz
well as multiplication vascaWars) is required. This distinction "=
especially important while contemplating the repeated use of the

image algorithm to obtain the fields due to point sources in
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regions consisting off an elastic layer perfectly bonded to two

elastic halfspaces.

Preliminary Considerations

The image method we consider here s dependent upon expressing
the displacements in terms of potentials. The specific potentia’s
we use are the analogue to Hansen's potentials for elastostatics
and dynamics. Unlike Ben-Menahem and Singh (1968) we do not expand
the potentials in terms of eigenfunctions, instead the algorithm
operates directly on the potentials. Note however, that ths
derivation of the algorithm makes use of the eigenfunction

expansion technicue (see Appendix 2).

Specifically, we express the displacement field in terms of

the Hansen potentials P1’ PQ and PB in the following way:
= ?1 b = [? ]
=R " =L 3

NCh,?,) = vP, (x,y,2z-h)
(25

R
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O
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where: v is the gradient operator
v X is the curl operator
2 - 2 - VZP =
v P1 v P2 3 0
= A+
8 = 3T 3K
A is the lLame constant
H is the shear modulus
h is a scalar for shifting the z-coordinate

Note that the potentials PT’ P2 and P3 have to be harmonic din
order for N, E and M to satisfy equilibrium. The Cartesian
components for the displacements, strains and stresses are given 1in

Appendix 1.

In order for these potentials to be useful for our purpose, we
describe how to obtain these potentials given an elastic field

satisfying equilibrium. We note the following:

a2y

v'N = voM = 0 vV'F = 2.(1—-6). 2
dz?
v XN =20
(3)
aze, a’rz -
v x E = 2:(1+6)- e - 2+.(1+8)- ‘e
dydz oxaz Y
e _ . ate_ . Tt
vV x M= 3-@ + 3-e + 3'eZ
Ixdz dydz Y dz?

Therefore, if we have a given displacement field u, we

calculate the following:
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Ay
veu = 2:(1-8)- s (4)
Az 2
and
- azva
(v x g)~ez = (5)
az?
From the above relations we find that:
[ [ veu
P, = |dz dZe——— + z'FQ(x,y) + Gz(x,y)
J J 2:(1-6)
(8)
P3 = |dzidz[(v x g)~ez + z-F3(x,y) + G3(x,y)

The Fi's and Gﬁ's are chosen such that ?2 and P3 are harmonic
in the required region. Note, for the image method we should choose
all the singularities of the potentials to occur in the region
where the source occurs. This is made clearer in appendix 5 when we
consider examples of the use of the algorithm. Finally, once P2 and
P3 are determined, whatever remains s ascribed to ?1. If the given
displacement field does satisfy equilibrium, the field should be
expressible in terms of these three potentials (see Ben-Menahem and

Singh 1968, and Morse and Feshbach 1853).

The Hansen potentials for a point force, a line force
perpendicular to the z-direction, and an edge dislocation
perpendicular to the z-direction are given in Appendix 2. We will
show later (as +is already known) that there is no need to obtain
the potentials for a purely antiplane deformation field, since the

image field involves a field of a similiar nature as the source.
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The Algorithm

Now we describe the algorithm and the notation associated with

< A
[

; consider two elastic halfspaces perfectly bonded along an

’

interface plane at z=0 (see figure 1). The material properties of

region 1 are described by ;.11 and 61, and of region 2 by p2 arid &

3

Next we define the following:

F(x,y,z) = P(x,y,-2)

YOS p,/p, (7
- (6,+1) b g £8:*1)
“ (8,+7) T (1 8,+1)

Note that if P 9s harmonic then P is also harmonic and hence

can be used as a Hansen potential for N, E and M.

The algorithm states that if we have the representation for a
point source in infinite space of slastic constants similar to
those of region 1 &t the location x=y=0 and z=h described by the

displacement field:

0

o uo(h,Gx,t

0 L0
52 (8)

then the displacement fields in regions 1 and 2 for a similiar

point source in region 1 at x=y=0 and z=h are given by:

~~
€W
~

s
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where:
L - 0
.tR h .__RR( h,a,b,&l) r‘R
1 0
Po= R ()R]
S - 1.(h,a.b p?
f.R - =R( » &, '52'51)'-—R
2 _ 0
2
26, (1=adh- 5= | +(1-b) - 263 (1-a)h® -2
Ro(=h,a,b,8,) = [mommmmmmmmmmmme | °z__
+(1-a) +26,(1-a)h~i;
+a ~2(8,b-6,a)h2
L T
IR(hraybrSZ:Gl) = |- e e e
0 +b
1-o _ +2
B () = [ T ] IL) = 90
(10)
We note that:
¥ = R (-h,a.b,8,) 20 = B.(~h,a,b,8,) F0
R :R ? r r 1 __R =R r H4 1 _R
and: (11)
Br(-h,a,b,8,) = Rp(+h.,a,b,8,)
1’2 K3 - - - 0
Note that the ﬁL are simple multiplicatives of tL' The case
when zg = 0 corresponds to the purely anti-plane problem, and thus,

the algorithm reduces to the scalar image method for that case.
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The derivation of the above algorithm is given in Appendix 3,
an analytic check of the algorithm (making sure the displacement
and traction interface conditions are satisfied) using the
Cartesian components tis shown +in Appendix 4, and finally some
sample knhown solutions are rederived in appendix 5; namely screw
dislocation in & half space with a free surface, the Boussinesg and
Cerruti point force normal and tangential (respectively) to a free
surface, Flamant's line force normal to a free surface, a 1ine

force tangential to a free surface, and finally Mindlin's solution

of a point force interior to a halfspace.

In anticipation of applying the above algorithm to the
derivation of point sources for a region consisting of an elastic
layer perfectly bonded to two elastic halfspaces, we consider the
effect of shifting the interface plane from z=0 to z=H on the form

of the terms in the algorithm.

Assume the interface is at z=H. Define a new coordinate

]

z' z-H. If z = h is the location of the source point (h > H) then
z' = h=-H is the location of the source point in terms of the new
coordinate, and z' = H-h (z = 2H-h) s the location of the image of
the source point with respect to the interface. In terms of z', the
algorithm is applicable as shown above with heffective = h-H. We
then reexpress z' in terms of z. Therefore, for the case when z=H

is the +interface plane we get:

. 0 0 o _0
given: o = u (hrsj, '.tR»r.L)
then: u' =%+ ueH-h, 8, BLED)
2 _ 2 .2
u = H(h:ézrﬁRrgL)
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where: L = Ro(H-h,a,b,6,) 2
el =R (1))
P2 = I (-H+h.2,b,6,,5,) i
p2 = 1, (v)-p)

(12)

Point sources in a region consisting of an elastic layer perfectly

bonded to two elastic halfspaces.

In this section, we consider the method of derivation of the
displacement field due to a point source in a region consisting of
an elastic plate (0<z<H) perfectly bonded to two elastic halfspaces
(see figure 2). The location of the point source is allowed to be
either in the plate or in one of the halfspaces. The case of the
source being in the elastic plate and the case of the source being
in one of the halfspaces have to be treated seperately. The elastic
parameters used to characterize each region are chosen to be Fﬁ and

éﬁ, where Gﬁ is defined as éﬁ = (A+U)/(A+3u).

In order to simplify the presentation, we define the following
terms {(this notation is suggested from private notes by Rice 1985
of an outline of using the image method combined with the
Papkovich-Neuber potentials to solve the same problem, although a

detailed description of the implementation is not performed):

=~
m

] t/
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at = (61+1)/(61+1t) bt = (61+1)/(7i61+1)

:: - t % + _ E:
SR(h) = SR(h’b‘]'a 'b ) gL - SL(‘1 )

0 _ t  + ¢ t _ t
lR(h) - IR(h:a ,b '6 ,61) lL - IL(" )

* -—

T OB MK,

* _ * K _ K
a = (62+1)/(62+7 ) b = (62+1)/(1 51+1)
R¥(h) = R.(h,6.,a ,b" R = *
Br(h) = Bp(h.8,.a .b ) B = B ()

* _ * K * *
I.(h) = I (h,a ,b ,6.,5,) I, =1, )

(13

Cage I: source is in region 1 (the elastic plate), and h<H

Referring to figure 3, a point source located in an elastic
plate requires additional fields (derived using the algorithm) to
conform with the boundary conditions on the upper interface. These
additional generated fields have to conform with boundary
conditions (derived using the algorithm at a shifted interface of
TJocation z=H) on the lower interface; hence each field generated by
the algorithm requires a further image. The same argument applies
when we start satisfying boundary conditions at the lower interface

first. Hence, we can deduce the following:
Given a point source in region 1 (h<H) 1in the form:

0 _ 0 _0
u - Q(h'51'£R’£L)



Then:

1
Y

it

it

i

it

i
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0 1+ =1+
u o+ g(~h,61,£R (0).1&L (0))

+
m

u(-2mH-h,5 B T (m), E T (m))
1 1 R L.

N8

1-+

— =1-+
u(2mH+h,5 o " (m), B (m))

1
+ u(2H-h,6, ,EL7(0), B/ T(0))

+
N8

m

+ S g(2(m+1)H~h,51,E;—(m),zl—(m))
m=1
+ S H(—QmH+h,61,E;+-(m),fl+_(m))
m=1

D ul=2(n=1)H-h,5,, 25" (m), 27 T (m))
=1

m
2- 2-
+ w(h,8,, 2, (0), 2" (0))
N 2- 2-
+ > u(-2mH+h,&6,,¢° (m), 2" (m))
2’'=R L
m=1
-+ 0 1+ + 0
Re(—=h)-¥g r (0 BB
e BT _ g, 1-+ - gt
= Bp((2m=1)H+h) P (m=1) o (m R ' (m 1)
+ =1-+ 1+ w1+
Rp(=2mH-h) ¥~ (m) g (m) = R ¥/ (m)
- 0 1- - .0
+ =1- 1+-— - pt.el, _
Rp(—2mH+h)-P  (m-1) g (m) =R P (m1)
- s1+- 1- P
Rpl(2m+1)H-h) P " (m) g (m) =R B (m)
- 0 2~ L= L0
Lg(-H+h) By 2O =L -8

(14)

(15)
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s1+- 2- I
2m+1)H+h) BT (m) 2S(m) = I BT (m)
2-+ - =14+
(2m=1)H=h) -EL " (m-1) Po(m) = I B T(m-1)
(16>
above recursive relations for the "image" potentials

to obtain their direct relation to the infinite space

potentials gg. and gﬁ. This can be done by induction and the final
results are:
-1+ _ =0
=1+ _ - _ pt .50
ﬁR (m) = [ |=! [R (2kH+h) - RR((2k 1)H+h)]k] gR(h) gR
=1+ . ot.g0
m
1+ _ l I + - + 50
£ (m) = [5L EL] BB
k=1 k
[ m
7 () = [B"( (2k=1)H=h) R_(=(2k-2)H h)] }-go
R =R R
| k=1 k
£ "M (m) = g5 |2
- k=1 k
Fl7(0) = RI(-H+h)-#°
=R =R =R
- m
_1- - - . + —— * - — .—0
ﬁR (m) = l=! [gR(-(2k+1)H+h) BR( 2kH+h)]k} SR( H+h) gR
1- _ .- 0
P (0) = R B/
r m
=1- - L+ - =0
£ (m) = R
L L =1 =L =L I L =L
m
=1+- + - 0
o (m) = [ L! [SR(2RH~h)'§R((2k~1)H—h)]k]'tR
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(17)

C
Once the ?1 potentials are known in terms of the P

potentials, the P2 potentials are obtained by one further matrix

operation as given previously (16).

Note that whereas the R, and I, matrices consist of one scalar

L =L
per matrix, the BR and IR matices are 4x4 matrix operators
. . " a n n a 2 3
involving 3= and 372 operators as well as constants.

One subtle point when deriving any given point source for this
case (i.e. when the point source is in the elastic layer) is that
the potentials have to have all their singularities in the region
z>0 for the series of "image" potentials generated with the first
reflection being with respect to the upper interface, and the
potentials have to have all their singularities in the region z<H
for the series of "image" potentials generated with the first
reflection being with respect to the lower interface. These
conditions are imposed on the choice of the potentials defining the
original source, in order not to introduce any further
singularities in any given region thru the use of the algorithm.
This condition can be satisfied due to the flexibility in choosing

the potentials.

Cese J1: source is in region 2 (the Jower halfspace) and h>H

Referring to figure 4, a point source located in an elastic
half-space requires additional fields (derived using the algorithm)
to conform with the boundary conditions on the first upper

interface (i.e. the elastic plate and lower halfspace interface).
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Fields in the elastic plate are thus generated, and these have to
cornform with boundary conditions on the upper interface (z=0) via
the algorithm. From thereon each new field generated influencing
the elastic plate have to have a further "image". However, there is
only one "series" of sources generated by this process since the
first elastic field generated in the elastic plate already
satizfies the boundary conditions with respect to the lower

halfspace. Hence, we can deduce the following:

Given a point source in region 2 (h>H) 9in the form:

it

0,0
g(hraz :tszL)

u
Then
ORIGINAL PAGE IS
OF POOR QUALITY
u1 = u(h,s ?O* PO*\
~— p--% £ 1'_R :_L Vi
=1 =1
+ u(-h,5, B 7(0),E (o))
N 14 1+
+ » w(-2mH-h,8_ ,F_ (m).E (m))
1°=R L
m=1
& 1—+ 1—+
) wCemeh, 6 BT (m) BT (m)) (18)
m&n )
2 0 =2~ =2-
4o o= W o+ u(2H-h,8,,8.,(0). 8 (0))
2+ 2-+
+ Eg(—z(m—wH—h,ag,gR (m), 2" (m)) (19)
me1
where:
0% * 0 0 *x 0
= T - = T
P Ip(h-H) ¥ Ly I°PL
1+ ot * 0 1+ - pt. *. 0
1-+ - =1+ T+ - =1+
7 v - — . —_— . -
1 + 1 =1~
Po (m) = R (-2mK-h)-E. " (m) P () = ROGETT(m)
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2- _ 0' 2~ _oL¥ L0
27(0) = Rp(H-h)-® P.(0) = R ‘B
2+ N _ _ g1+, _ 2 + - -._1+ _
227 (m) = Io(-(2m=1H-h) - (m-1) e Tmy = 1B (nm1)
(207
From the above recursive relations for the "image" potentials

we would Tike

potentials to

results are:

R

to obtain their direct relation

and go

L This can be done by induction and the final

170y = 5;<h>~1*<~h+H>.Z°
1V (m) = R " (zkH+h) R ((2k=1)H+h) RIC(h) - Th(~h+H) -FD
LS 1 Br | Br Ir e
=1+ - 1+ ¥.$0

m
=1+ - + o + *.—O
Eom) = [ i=! [5L 5L]k] B I8

m
z;“*(m) =] [R (-(2k=1)H=h) *RY (= (2k=-2)H h)] ] T (h=H) gg
k=1
Coom
1=+ _ l .- .+ * 0
g (m o= { 1 [EL §L]k} i
(27
Again, once the P1 potentials are known in terms of the PO

potentials,

t he P2

potentials are obtained by one further matrix

to the infinite space

operation as given previously (20).

When deriving any given point source for this case (i.e. when

the point source is in the lTower halfspace) the potentials have to

have all their singularities in order for the

in the region z>H,
reflected images not to introduce any further singularities within

any given region.
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Conclusions and further recommendations

A vector image method has been presented, for elastic problems
with planar layering. An algorithm has been presented on how to
derive point source solutions for two bonded elastic halfspaces,
and then extended to the case of an elastic layer perfectly bonded
to two halfspaces. Specific cases have been worked out and shown to
coincide with well known solutions in the literature. A study of
the number of {image potentials required to obtain a good
approximation for the lavered medium problem has not been

investigated, but is of considerable practical interest.

A feature of this image method is that solutions are obtained
in either closed form or as infinite series of relatively simple
expressions. The form of the expressions allow the use of term by
term application of the correspondence principle for obtaining the
viscoelastic response of the solution of the corresponding point

source in a viscoelastic layered medium.

The method of deriving the algorithm suggests that an
analogous algorithm can be obtained for spherical interface
problems, and 2-0 (but not 3-D) cylindrical interface problems in
elastostatics. This suggestion is supported by the existence of a
scalar image method and Hansen potential representations for both

these geometries.

Finally, it would algso be of interest to investigate
equivalent algorithms for other governing equations. For example,
elastodynamics and poroelasticity could be potential candidates for
such an jnvestigation. Elastodynamic problems, in particular, do
have Hansen potential representations that have been well
established and used and could be investigated first without the
considerable preliminary formulations that are needed for

poroelastic problems.
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Appendix 1: Cartestian components of the displacements.,
gradients of the displacements., strains and stresses

1

i r

: "

Digplacements :

-2 3 R 3 3 L .
= —_ - - . . +
u(e.8. 2.8 ) = .0 3% ~ 32 ~ %% sxezte Y avTe]
2
-~ 2 ) R 3 )
° - - 2. — - 2 ¥
M Qy[ ayp1 ayPQ “ éyaz?2 X 3]
2
- a3 3 3
r —— — —-— - . -
et 62?1 * 62?2 2:6-2 aZQPQJ

(1.1

oy

Gradients of the displacements:

2 2 3 2
a_xux = 82P1 - 9 P2 - 286z - 5 \a2 aia \o’)
Ix Ix Ix dz y ¢
2 2 3 2
3 3 3 3 3
— T — — —— - . . * o + ¥y
yux axayPT axayPQ 2:6-2 axayazP2 ay2 2
o ) 2 2
S - ac a~ )
R = — -+ * — . . [P + —
3z axazP1 (1+28) 6xazp2 2:6-z 2 2 aybzPE
9z IX
2 2 3 2
g_u = 9 ¥ — 9 ¥ NEEY - 9 _i_P
AX Yy dxady 1 Axdy 2 dxdydz 2 ax2 3
2 3 2
3 a3 3 3 9
—d = —f - =P, — 2:86-z: 24
2 2 3 2
3 3 3 2]
—U T =P - (1428 P, - 2862 cmeeeP, = =P
L]
Z°y dydz 1 dydz 2 6226y 2 Ixdz 3
2 2 3
3 a 3 3
= V4 \ 4 -2
3%z 3xaz 1 T ez 2 2:6-z 7>
dz IxX
o 2
-a—u = 2% > + 62 y 286 i r
dy z  dyaz dydz 2 "ot/ 2
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]
N

2 2 3
a3 3 3 3
- - . - DB v
35”2 2P1 + (1-286) 2Y2 2.8z 3?2
9z 9z a9z
(1.
traing:
2 2 a3 a2
Cxx = ory - 2 ¥p = 28z ?2 dxdy 3
ax 3x Ix“az Y
2’ a° 3’ 1 a3 a2
T e ) Bz Y + . -
6xy axay?1 axayy2 2:8:2 dxdyadz 2 2 (ay2 3 aXQPB)
2 2 3 2
5] re] 3 1 3
= — " —— -— 2. . " —
¢xz T dxez 1 T S azte 8-z ——F, 2 eV 2
0z AX
2 2 3 2
a 3 ] 3
€ = —P - P - 2:6:2i P, - 2
Yy ay2 1 ay2 aygaz 2 IxAy 3
2 2 2 2
3 %) 3 1 2]
e _ = P, = BrgsP, — 2802 P~ "y
4 dydz 1 dydz 2 az2ay 2 dxadz 2
2 2 3
€ = 2 Y. + (1-28)- 9 > o 2.8z 9 >
zz T T 21 T2 2 TR,
Az 3z dz
2
3
+ = 2. - . ¥
e><>< eyy M ezz (1-8) a~2 2
(1.
Stresses:
62 62 63 62
Cox = 2 2P1 - 2y--—§$2 - Ay&-z-——;——Pz + 2p'(36—1)~——§rq
A x Ax Ax“az 3z ¢
]
a‘-
2“axay?3
2 2 2
o =ou2_v - 24 P - Apbeze—O __p
Xy H axdy 1 ¥ Axdy 2 H Ixdyadz 2
2 2
3 <)
TR - —T)
Ay A X
2 o]
o = 2 --33—¥ 2 6-——E—¥ Az - 3~ Y, + M- 3"
xz ~ HIxETa H® 3537 2 MOz ——F5 * K 373



27

32 ‘ 52 33 2
o, = W —5P, L P, - 4pbrz ——— P, + 2u-(36-1) —5P,
4 ay*© ay© © dy“az az° “
o
a(-
- Dlfoe
2u axayP°
2 2 3 32
3
o = 2M- P, — 2ud: ¥ 48z P, - H'e——©F
Yz dydz 1 dydz 2 az%ay 2 Axdz 3
2 2 3
o] = 2 9 Y. + 2 60—3—P - 4ub-z- ¥
zz He—sFy * <H 2 2 3 2
3z az az

Note: 2A-(1-6) = 2u-(36-1)
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Appendix 2: Sample potentials for some point sources

Point Force:

The displacement field due to a point force at the origin can

be written as:

1 1 1
Ui T Inp- (146 '[ Pi—+— 7 6~pk-xk-xﬁ-—:§ ] (2.1
At+p 1T _ 1
where: &5 "TIE — ¥ 3957
o] o] 2
r_‘u, - X». + y2 + 2‘,
P are the magnhitudes of the point forces in the
ith—direction

For the point force it can then be checked that the Hansen

potentials are:

= p . . X . Y o7
1% =3 [ Pi'rEz T P2 t pyrin(riz)

rtz
p = P | o X - Xt p_-In(r2z) (2.2)
2 2 1 Fxz 2 riz 2 ’
- . . 'L - aL
?3 =P [ P4 (1+8) rtz @ P2 (1+6) rtz ]

where: B

1/[amp- (1+46)]

Note that 9f the upper (lower) "sign" is chosen in one
expressior, the upper (lower) "signs" must be chosen throughout for
all the potentials. Also note that taking r+z (r-z) in the

expressions makes the potentials (but not necessarily the



displacements) singular
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when x=y=0 and z<0 (z>0).

Line forces at x = 0 parallel to the z = 0 plane

The displacement field due to a line force can be written (for
plain strain) as:
=2 -p,*1Ing + & X, X, ! f i,k 1,2
My S mmps| TP PRI T2 or 1 =
and (2.2)
u, = 0
) - Aty = A+u
where: « = FEyT] 6 = A+3p
§2 - X2 v 52
P, and P are the magnitude of the line forces

For the line force

potentials are:

i
[e
Y1 = zaps Perd
B
- b,
L
o -
b d = —
2 smud Py
- P,
P, =0

W

it can be checked that the Hansen

z-arctan(é) - x-1n¢ + (1+6)-x ]

z-1In¢t - z + x-arctan(é) ]

z°arctan(§) ~ x+Int + (1+8)+x ]

z+1In¢ - z + x-arctan(é) ]

(2.4)
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Dislocations parallel to the z=0 plane:

The displacement due to a dislocation along the y-axis (plane

strain) can be written as:

di z dk
u, = [ §?narctan(;) - eik°§ﬁ'1n€ ]
. —-(2ue . . d )-Int + (2pe  d )-86-x_ -X L
4Tub He k%K He k%K no €2
for i,k,n = 1,3
and: (2.5)
u2 = 0
+1 for i =1, k =3
where: €. = -1 for i = 3, k = 1
ik
0 otherwise
d1 and d, are the slip magnitude of the dislocations

We note that the terms in the second brackets expressing the
displacements are of the form of line force expressions with
equivalent magnitudes of QFeikdk and thus their Hansen potentials
are already known. The Hansen potentials for the terms in the first

bracket can be shown to be:

PE;SEESt - 1, d. - z:1n¢ - z + X°aPCtaN(£)
1 T 2w 1 x
z
+ d3'[ z arctan(;) - x-In§ + x ]
biogher _ f58Eer _
L = 0 ¥, =0
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Appendix 3: Derivation of the image method algorithm

The eigenfunction expansion method for elasticity problems in
lavered media was first formulated by Ben-Menahem and Singh 1868.
We have used this method to derive the algorithm discussed in this
paper. The notation (as far as possible) is the same as in the 196¢
reference paper, although some new temporary terms have been
defined in order to simplify the algebra for this specific

implementation.

Any elastic displacement field satisfying the egquilibrium

equations:

viu + (1+A/p)-vvey = 0 (2.1
can be written as the sum of N, F and M:

N = vP

1
E = 2-; 2 - vP, - 2~6-z-v-3—$ (2.2>
z 3z 2 2 az 2
M=v x [;Z~P3]
where: & = (A+u)/(A+3u)
v‘?1 = va2 = v2?3 = 0

Using the method of the separation of variables in cylindrical

coordinates on the potentials P1, P2 and P3 in the form:
Y = R(r)-F(e)-Z(z)
We get: (2.3)
¥ = exp(tkz)-Jm(kr)oexp(time)
where:
J is Bessel's function of the first kind mth order
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Reexpressing Y1, P2 and P, in the above form and carrying out

) .
the v and v x and — operations, we get:

oz
(- <]
y = § J [ AT N + AT N + BTFY + 8BToFT v+ ctemT 4 cTeM” ]-dk
m m m m m m m
m=1
0]
(3.4)
t k4 + P
where: Am’ Bm and Cm are constants dependent on 'm' only.
o exp(tkz)-| 2P+ B
B, © &xplixe ~m =m
t
Em = exp(ikz)-[ (i1—26kz)-Em - (1126kz)'§m ]
Mt = exp(tkz)-C
LS P =
and:
Rm = ez'Jm(kr)'exp(wmo)
B = (e -xo + e, —=22)J (kr)-exp(ime)
m - (8r3Rr t G Tkr FE/Uplir/reXRUIM
c = (; ._1_.2_. - ; - Y (kr)exp(imeé)
m r kr o@ 6 dkr’“m
(3.%5)

In the above expressions for Bm, Em and Qm there is the
implicit understanding that we can consider either the real or

imaginary components of the expressions seperately.

From the above expressions for the displacements, we can find
the expressions for the tractions at a plane z=constant, and we

rewrite the above as:
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r&
- ¢ R Ly, o
191 —m§1 (b + W) dk (2.6)
Y0
roo
I%= § (X + 15y dk (2.7)
- m<1 om om
0
where:
W= x Bty B
m m m m m
Rz okex p 4 2k-v. -8
m m
QL =z
m m m
- = kez_-c
m m m
(3.8)
and:
+ —
X = Am-exp(kz) - Am~exp(—kz)
+ s;.(1—26kz)-exp(kz) + B (-1-26kz)-exp(-kz)
+ -—
v, = Am-exp(kz) + Am°exp(~k2)
+ 8;~(—1—26kz)-exp(kz) + B+ (-1+26kz) - exp(-kz)
+ ——
z = Cm-exp(kz) + Cm-exp(—kz)
+ —
Xm = Am'y-exp(kz) + Am~p-exp(—kz)
+ 8;'y6'(1—2kz)~exp(kz) + B;-y&-(1+2kz)-exp(—kz)
o+ -
Ym = Am-y-exp(kz) - Am-p-exp(—kz)
+ 8;-p6-(—1-2kz)-exp(kz) + B_+ub-(1-2kz) exp(-kz)
7 =c¢’ K - K
m = CpoHrexp(kz) - CHrexp(-kz)
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. R Lo
We notice that that 4~ components are uncoupled from the wooin

t -
the sense that the A;, Bm coefficients do not affect the 2;

b o ..
components and the Cm coefficients do not affect the gi components.

We therefore treat the gs and the u; components seperately when

analyzing a specific problem in terms of the Hansen potentials.

Now we consider the specific geometry shown in figure 2.1. The
region consists of two elastic materials seperated by a planar
interface. The material elasticity parameters used to characterize
the regions are taken to be u,, 6§, and u,, 8,. A point source
exists at the position z=-h. We are reqguired to find the
digsplacement fields for region 1 (z<0) and for region 2 (z>0) under
the influence of the point source, such that the displacements and

the tractions are continuous across the interface plane (z=0).

In what follows, we are manipulating uR

L . .
and g in equation
]

T L4

3.6 for a fixed "'m', but the "m' subscript will be dropped. First,
we express the displacement and traction (on a z-plane) for

(z+h) > 0 (which includes z=0) of a point source of arbitrary
nature (using the eigenfunction expansion method and expressing the

m'th component in matrix form) in the following way:

. - , _
u(P) -1 -1 - 26,k-(z+h) Aq
——————————————————————————————————— c[-——=--|exp(-k|z+h])
u(B) +1 -1 + 28, k:(z+h) By
T(P) +2ky, +2kp 86, - [1+2k-(z+h)}]
{ T(8B) L -2ku, +2kp, 8, [1-2k- (z+h)]
40 J



t
|
[
|

m

-

[ terms due to the |

| as given above
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[ CS]-exp(—k|z+h|)

point source

Ct cexp(kz)
' +

(2.10)
u(c)
= -—1- ——————
TS
0}lz=0
(3.11)
A7
—————— cexp(kz)
+
B
1
terms due to the
point source
as given above
(3.12)

And the elastic fields in region 2 are expressible as:
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1 f | -
u(P) -1 -1 - 28,kz A2
————————————————————————————————— =——|+exp(-kz)
u(B) +1 -1 + 26,kz e,
T(P) +2ku, +2Kkp 8, (1+2kz)
T(8) ~2kp, | +2kp,8,- (1-2kz)
L L
(C) +1 { c;]-exp<—kz>
I(Q) =k,
(3.13)
Applying the condition that e and I are to be continuous
(for each m) along the interface plane z=0, we get:
[ . +1 +1 +1 [ A3 F s,
________________________________ -~ _—
+1 -1 -1 +1 81 _ 82
+2ky, +2kp, 6, ~2kM, | -2ku,8, A; S,
L +2k, —2kp,8, +2kp, | ~2kp,8, L 8; J | S, -
[ +
S NS B U N W
+ky, +ky, C; 56
(2.14)
+ + + - - - . .
Now we solve for A1, 81, C1 and A2, 82, 02 by inverting the

4x4 and 2x2 system of equations. We obtain:
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+ . o 7+6, 1+6, [
o i el O .+ rel ol I
+ _ _ _ 765,+1 | _v6,+1
BRI IR TR il B iactaiutol 3Pl B 17 unl D B3
- 4 _ _ _16,+1 76 ,+1
2 MDA i 7018270 | TERu | TERa| [ Sa
- _1+8, _1+5,
t 82 +71+86, +7+8, RE, R, L 54
+ 1
AT IR TR U <l -
- 7+ 1 1
c -1 M rvae 3
[. 2 L I‘ll L 6
(3.15)
where: TS ML/ M,
4 5 2:(7+6,)-(16,+1)
Expressing the $'s in terms of Aa, 8; and CE, and simplifying
the expressions we get:
[ A7 0 1 - b A
-z | e —-===|exp(-kh)
81 1 - a 26, (1=a) - kh 80
A; a 28,a-kh
B, 0 b
L 2 ] | |
+ ] [ 1 -
BTN I s [ “o ]'exp('kh’
- 2
C2 | 1T+
(3.186)
where: a 2 (86,+1)/(v+86,)
(2.17)
b= (8,+1)/(7:8,+1)
Therefore we find that the displacement field (for a given m)




in region

1 and region 2 can be written as:

u(P) +1 ’+1—26,kz 0] l 1-b A
————— S et e e —===t{-exp[k(z-h)]
u(B) +1 ‘—1—26,kz 1-a | 26,:(1-a)-kh By
1
+ source terms ]
L
1 A
5(9)] = [ +1 }'[ T:% -[ C0 ]-exp[k(z—h)] + [ source terms }
1 F
(3.18)
[ 1 -
u(P) -1 |=-1-26,kz +a 26,a-kh AO
————— = |- B B ——=—teexp[-k(z+h)]
u(e) +1 |-1+28,kz 0 +b B
R L I 0
aerl = | w1 |l 2= ] ol |explok(z+h)]
-t = T+ 0
Is L
(3.19)
The u(C) terms are in a form from which we can deduce the
algorithm, however, the u(P) and u(B) terms have to be further
manipulated. We now try to express the u(P) and u(B) terms in the
following manner:
r 1 [ +
u(P) +1 |+1-268;k+(z—-h) Aa
————— = il Bttt bttt S —-z-|rexp(k(z-h)]
u(B) +1 |=-1-28,k-(z~h) { 8
1 .+ 1
> +1 |+1-28,k-(z-h) Ab
M Bl ittt ‘{=-3-|rexplk(z-h)]
“l+1 |-1-268,k-(z=h) L B,
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4
H

32|+ [ A; ]-exp[k(z~h)] [ ]
+ ——— e + source terms
2
Az | +1
(3.20)
u(P) -1 |=1-28,k-(z+h) A
————— = ——m e e | e p e exp [~k (Z2+h) ]
u(B) +1 | =1+28,k+ (z+h) 8
R B | I
r b r — 1
> -1 [=1=-28,k+(z+h) Ab
rr2 i c|--=-|exp[-k(z+h)]
+1 | =1+28, k- (z+h) J Bb
o[- 1] a- cexp[~k(z+h)]
3 L o]
622 +1
C (3.21)
Noting that:
" n
nexp[k(z—h)j = k cexplk(z-h)]
Az
and (3.22)
an n
—exp[-k(z+h)] = (-k) -exp[-k(z+h)]
az
We obtain:
+ - + -
Aa = (1~b)-80 Ba = (1—a)-AO
Al = =26,-(1-a)+h-A7 + 485 (1-a)+h- By (3.23)
+ - . —— . - - + - —— 2. — - 20 -
Bb = 26, (1-a)-h 80 AC = ~48,-(1-a)-h BO




and:

ft

Q
>

2:(5,

40

b-6,a) h+B. B, = A =0

o
o
0

(3.24)

Since the above relations are true for each component of a

potential,

get:
if:
o
Then:
u
193

2

then they

N(-h,

0
u +

-+

0 0 0

u<h,<1—b>-F°) + 3 N(h,-28

N(h +461 (1-a)-h-¥ )
2

9 2 2 =0
+ ;;§u<h’-45,‘(1—a>-h 7))

+

-+

+

N(-h,

+

E(6,.h, (1-2)F2)

3_5(5,,h,25,-(1—a)-h~Fg)

-0
mch, 279
aP?) + 3—N(—h,2-(5,b—6;a)-h-?2)
P}
355(521 -h, b? )

2

+ M(- ’1+1 3)

L+ (1-a) - h-F2)

must be true for the whole potential and we

(3.25)

(3.26)
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Noting that:

an "
—N(h,cst-P) = N(h,cst: ¥ )
n n
dz 9z
and (3.27)

3 3 F)
g?F(G,h,cst-P) = N(h,~26l-cst-3zf) + F(5.h,Cat°SE*)

where: cst is a constant

We obtain the algorithm given in the main body of this paper
(two minor differences are: i) The statement of the algorithm in
the paper considers region 1 to be at z>0 and hence z=+h instead of
z=-h to be the location of the source point and ii) A formalism in

terms of matrix operators is implemented in the main text).
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Analvtic check of the image method algorithm

Referring to figure 1 and

main text, the image algorithm
W = neheD) o+ s hPD)
Then:
1 0 1 =1 51
4 =4 fd(-h8, k2
2 2 2 2
H = u (h:5z:.‘.’;R:_’;L)
where:
Fl = R.(h,a,b,6,) -0
-R =R UL 2R
=1 _ =0
P2 = T (h.a.b,6,,6,) ¢°
_R =R ? ’ ] F 23R4 1 _R
2 _ 0

We have already expressed
displacement and stress fields
(Appendix 1). In this section,

components of the displacement

using the notation defined in the

states that f:

0
+ M(h,¥)

(4.1)

the Cartesian components of the
of any given Hansen potentials
we will check whether the Cartesian

and stress fields (in terms of

Hansen's potentialsg) that are generated by the image algorithm

satisfy the conditions of displacement and traction continuity

along the interface plane.

In order to simplify the checking of the algorithm,

consider the following 3 cases
0]
i) P1 = P ; r2 = p3
ity e, = ¢, P, =¥
2 ! 1 3
csa N -
i) PS = P ; P1 PQ

we will

seperately:
0

0



We will also note
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the following:

d — [ ) ] d 3 =
— = - ¥ S J, =
oz 3(-2 °z lz=0 z lz=0
(4.2)
d 3 — 3 d —
—¥ = and P =
9x z=0 9% z=0 oy z=0 3y z=0
Also define:
n n
a n? = .} n",0
A(X,y,2z) A(X,y,z) z=0
(4.3)
n n
d n; = 3 n;O
3(x,¥,2z) A(x,y,z) z=0
- Pl - =
Case 1: ?1 = ¥ P2 = P3 = 0
~ r 2 2
1 _ 3 3° d = 3° -~
S, T SR T B (Tmadrhraggy v (Tmade(may - 2eeh m‘”]
- - 2 2
3 _ 3° —~ N7 % T _ -
- d 2 2
3 A d — F- Y
e 3EP + 28, (1-a) h- 2? + (1—a)-(35r - 28+h- 2?)]
L 3z az
(4.4)
QQ = e a-i—P + @ a 2.? + e a f_y
- bat P Yy Ay z z
z=0
(4.8)

We notice that the displacement field is continuous across z=C

(the interface plane).

Next we consider the IZ traction continuity




(equilibrium).
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- 2 3
z1 - e} 3 =
I = ey‘l 2““axaz? + 25, (1-a):2u, +h- 2?
z=0 ) Ixaz
2 a3 _
-+ (1“6)'(—2P161'm? - 4”161'h' 2?)
dxdz
- a2 a3
+ e -[ 21, - P + 26, (1-a)-2u,h- ¥
Y dyadz ayaz2
2 a3
+ (1‘6)’(“2P151°3§3;* - A8, hi——P)
dyadz
- a2 a3
+ ez-[ 2M, 2? + 26,(1-a) -2, h- 3F
az 9z
a2 3_
+ (1‘5)‘(2F151'“—§? - A4u,8,-h- 37) ]
Az o0z
2
z2 _ - 3
L = S [ 2H22" 33337 ]
z=0
+ - B 2 ._62
ey H2a dyaz
- a2
+ ez'[ QU B 2? ]
az
Noting that:
2, [1 + (1-a)+86,] = 2u,+a

since

We find that the tractions across the

2H, "

|

&5,+1

7+6,

(4.6)

(4.7>

(4.8)

interface plane (z=0)
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are continuous. $

Case J]. ¢ =¥V ; ¥ =¥ _ =0

= e -2 9 + 25,h 2P + (1-b)- __r - 28%.(1-a).-h°_2_#
b%¢ Ix OXdz dxax

a2 _ 3
axadz
2 3

‘e -[—3._? + za,h.aa P+ (1-b)-3F - 46%.(1-a).n’—2 ¥
y oy dydz

2 3
- 28, (1=-a)-h- (—ayaz_ - s he ____ﬁr) ]
dyaz

2 3
- J J I = 2 9
z'[ 370t 2eahr—F + (I-b)r5g¥ r(1-a) h®—s¥
Az az

62 63
- 268, (1-a)-h-( ——F - 25,-h.2_¥) ]

622 3z

(4.9)

i 2 2
2 - 3 e J
u = ey [T2h(Babu8ya) g+ b (apP + 2850 higrasP) }

) Oxadz
: P+ be(-2v¥ + 28 'h-—ii—?)
3y 2 dydz

+ e -2'h'(62b_61a)'

+ e_-|-2-h-(6,b-6,a)-
- Az 9z

3
2 2
3 3
2? + b‘(g;—? + 253'h°—2—?) ]

(4.10)

We notice that the displacement field is continuous across z=0

(the interface plane). Next we consider the Iz traction continuity

(equilibrium).

- 52 52 52
- ex'[ T8y aEY MKt Bathr P+ 2p, - (1-b) g ¥
AxAz

z1

I

N
i
o
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4
- 48%.(1-a)-2u, h2. 2 F
IxXaz
63 64
- 28, (1-a)-h-(-2u,56,: 2? - 4p,6,-h- =¥ ) ]
3xdz Ixadz"
l')
T T MU PRNIE M 2p, - (1-b) - 2% &
ey 4,0, 3voz Hi0, ay622 M FIvErs
4
~ 46%-(1-a)-2u, - h2. 2 7
dyadz
63 ad
- 26,-(1—a)~h-(—2y,6,-————§$ - 4u,6,-h- 3P) ]
dyadz dydz
~ 2 3 2
3 3 d =
+ e [ 26, - —=P + AU, 8, -he—x¥P + 2u,-(1-b): g
z 2 3 2
9z 3z 9z
4
- 48%.(1-a)-2u,-h2. 2 ¥
4
¥4
63 64
- 26,-(1—a)-h-(2p161-——§F - 4,8, h- ¥) }
4
3z Az
(4.11)
z2 - 63
l = e '[ '—2h'(62b—'613)'2‘12‘ 2?
z=0 x Ixdz
a2 a3
+ b‘(‘2ﬂz5z'3§3§¥ * 4M38;-hr——PF) ]
dxdzZ
~ a3
+ e '[ "2h°(62b'—sla)°2yz' 2P
Y dyaz
a2 a3
+ b'("2p362‘a—y67” + 4“262’h'—ﬁ?) ]
dydz
- 3
+ e -[ ~2h-(6,b~86,a) 2U," 9
z 3z
62 a3
+ b (2u6,-—F + 4yz5z'h'~—§P)
az* 3z
(4.12)

Noting that:
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2Hy-[86, + (1-b)] = 2y -b 5,

since
96,86 + *86
ou. - 2= 2 = 2 6,8, + 8,
K T
1T + 16, 2
and

4p, (6, + 62-(1-a)] = 4u,6,-a
(4.13)

We find that the tractions across the interface plane (z=0)

are continuous.

Cese I]I: ¢ =¥ ; P =9¢¥ =0

v}
7=0 ay T+v dy
- 3 1-9 3 — -
Y [ 3% T T ax ] t e [ 0 ]
(4.14)
2 ~ [ 2 ]
u = @ - —f
70 x 1+9 dy
- 5 3 -
+ ey‘[ "m‘g}—(—?] + ez'[ 0 ]
(4.15)

We notice that the displacement field is continuous across z=0

(the interface plane). Next we consider the lz traction continuity

(equilibrium)}.

_ 82 1-9 32 = ]

z1 c . . -
€x [ Ha Aydz Ml o dydz
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2 2
~ T ) 19 3¢ ~
N I $ - T ) .
* ey l K1 3%3z T+v M1 33382 te, [ 0 ]
(4.16)
2
z2 - 2 3
I =e.[p2.__.__\9]
»=0 X T+9 dyadz
- 2 a° ~ .
* ey'[ Rtk P 2 ] * ez‘[ ] .
(4.17)
Noting that:
1-9 2
y‘°[1 T ] R (4.18)

We find that the tractions across the interface plane (z=0)
are continuous.
Therefore, all three cases check correctly, and the a2lgorithm

is correct.
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Appendix 5: Derivation of some sample Green's functions
through the use of the image algorithm

In this section, we consider displacement fields in Cartesian
components for some sample point source problems on or in a
halfspace with & free surface. The solutions that will be rederived
are readily available (and established) in the literature and hence
serve as an empirical check (see appendix 4 for an analytic check)
of the algorithm. In addition, these specific examples help clarify
details of the application of the algorithm.

By congidering a halfspace problem with a free surface, we

obtain the following simplifications:

v =0 1-a = -1/6, 1-b = -5,
call:
6§ = 6,
then:
[ )

~2h-3= | -5 + 4sn’. _%
Ro(h,a,b,8,) = |--ommmmmfommeeee ;~—~9—-— R (1) = [ 1 ]

-1/6 +2h~§§

(5.1

The following example problems will be considered:

I. Screw dislocation (Antiplane problem).
IT. Line force (x=0, z=0) acting on a free surface.
i) The line force s in the x direction.
ii) The line force 9s in the z direction (Flamant's
solution).
III. Point force acting on a free surface.

i) The point force is 9n the x direction (Cerruti's solution).
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1i) The point force is in the z direction (Boussinesq
solution).
IVv. Point force acting interior to the halfspace with a free
surface (Mindlin's solution).
i) The point force is in the x direction.

i1) The point force is in the z direction.

I. Screw dislocation (antiplane problem)

For the antiplane problem, all that is required is to obtain
the image potential with respect to the interface plane since the
SL matrix is the jdentity operator. Also, we notice that getting
the image of a given M type (see main text) displacement field s

equal to the M displacement field of the image potential describing

that field (i.e. M{(h.,¥) = M(~h,P)), and hence we can directly
operate on a given displacement field when using the algorithm for
a purely antiplane problem. This corresponds to the scalar field

image method for the antiplane case.
As an example we consider the field due to a screw dislocation
in the plane perpendicular to the x-z plane at location z=h and

x=0. The field due to the dislocation in infinite space is:

uy = arctan[(z-h)/x] (5.2)

The image field will be Uy which implies that the combined

fields give:
uy = arctan[(z-h)/x] - arctan[{(z+h)/x] (5.3)

O0f course this is but a simple application of the scalar image

method.
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11. Line force (x=0,!z=0) acting on a free surface.

For this problem the potentials are given in appendix 2. We
note that ?3 = 0 (j.e. there is no antiplane mode in a plane strain
problem as is trivially known).

We note that for the case when the point source is at the

interface (i.e. h=0), we get a significant simplification in the SR

matrix operator in the following way:

R (0,a,b,8,) = |-————]|-—nn~ (5.4)

This means that for the displacement fields all we need to

calculate are the following (e.g. see equations (2)):

9z

Now we perform the above differentiations for the image
potentials due to a line force. These potentials are linear

combinations of the following functions:

8|
it

A (z-arctan(z/x) - x+-1n¢ + (1+86)-%x)/2 = PA
’ (5.5)
FC = (z-1n¢ - z + x-arctan(z/x))/2 = P
where: §2 = ><2 + 22
We get:
3 d —
= -1Tn¢/2 + 86/2 —Y = [arctan(z/x)]/2
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3 =  _ d 5 _
337 [arctan(z/x)]/2 5=F. = Tng/2
2 2
3° = _ _ 2 3° & _ 2
ol (z/87)/2 5353 c (x/€7)/2
2 2
a° - _ 2 3= _ 2
5P, = (x/¢7)/2 5P = (z/¢7)/2
3z Az

(5.6)
i) Case when the force is acting in the x direction:
We get:

0
u =y

' [a/(4ny5>1.[

ex'[—6-1n§/2 - In¢/(28) - 22/£2 + constants ]

)

ez~{6-arctan(2/x)/2 - arctan(z/x)/(28) + xz/§2] ]

(5.7)
Noting the following ddentities:
22/¢% = 1 - x%/¢° 5/2-1/(26) = —p-(148)/(A+p)

(5.8)
5/2+1/(26)+1 = (1+6)°/(26) o = 2:-6/(6+1)

We find that the above solution coincides with that given in

Love 1827 (article 151), except for a rigid body motion.

i) Case when the force is acting in the z direction (Flamant's

solution):

We get:
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e
o=

- [a/<4nps>3-[
;x~[6°arctan(z/x)/2 - arctan{(z/x)/(286) - xz/t2 ]

PN

2,2
+ e [&:1ng/2 + Ing/(28) - z°/¢7] ]
(5.9)
Noting the same identities mentioned above (5.8), we find that
the above solution coincides with that given in Love 1927 (artic’e

151), except for a rigid body motion.

I11. Point force acting orn a free surface.

For this problem the potentials for the point source in
infinite space are given in appendix 2. However, we have a choice
of where to Tocate the singularities of the potentials. Since we do
not want the image potentials to introduce any new sources inside
the halfspace, we choose the infinite space potentials to have all

their singularities in that halfspace.

Again, 1if we are only interested in the case when the point
force acts on the free surface (h=0), we get eguation (5.4). This

meanrns that all we need to calculate are the following:

Y]

2 2 2
a 2 3 2 3°7. [0
- |3x’ Jdy’ 9z’ dIxdz’' Qdyoz' 22 1

Now we perform the above differentiationz for the image
potentials due to a point force. These potentials are linear

combinations of the following functions:
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P, = x/[2:(r+z)]
(5.10)

FC = —[In(r+z)]/2

In addition, we have an antiplane potential for this case

which is a linear multiple of the following function:

FB = vy/[2-(r+z)] (5.11)

and we will alseo have to calculate:

We get
A RV A P L ]/2
37, - L ~(xy)/ [ (r+2)?) ]/2
05 = | 2
3TA T | -x/[r-(r+z)] |/
2% o 2, 3 2, 2 2
>3 A T | =1/0re(r+z)] + X7/[r7-(r+2)] + x“/[r - (r+z)] /2
3% _ r 3 2 2
il GOV N CO VS N V2
2
aQFA = [ X/ ]/2
9z

(5.12)

2
§;¢C = [ -x/[r-(r+z)] ]/2 3§35? = [ X/r3 ]/2
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o = _ [ ] 2% _ I 3 1]
@C - l -y/[re(r+z)] J/2 a—ya-?rc = l y/r J/2
35 [ i 1,2 IS R P
3z C " 3.2 C

2 ¥ [ —(xy)/[r (r+z)?] ]/2

3% B

d —

y B

it

[ 1/(r+z) - y2/[r-(r+2)2] }/2

i) Case when the force is acting in the x direction:

We get:

0
u =4

+ [1/4np(1+6)]-[

~

e

|

+

+

5-/02-(r+z)] - (6+-x2)/[2r- (r+z)°]
17026+ (r+2)] - x2/[26r+ (r+z)°]
2/[r-(r+z)] + (2x2)/[r°(r+2)]
(zx2)/[r%  (r+2) %))

(146)/(r+z) - (148)-y2/[r-(r+z)°] ]
—(6-xy)/[2r-(r+2)2]

(xy)/[26r (r+z)°]

(xyz)/[r°- (r+z)]

(xyz)/[r% (r+z))]

(1+6) + (xy)/[r- (r+z)?] ]

(5.12)

(5.14)
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~

+ e_: ~(&-x)/[2r(r+z)]
+ %x/[26r-{(r+z)]
]
+ (XZ)/P“]

(5.15)

} Noting the following identities:

(22) /0P (r+2)] + (x°2)/[r% (r+2)2] = x2/r2 = X2/[r (r+2)2]
z/[re(r+z)] = 1/r = 1/{r+z)

>

[0 o
VS TP (r+z) ] = 2/(r+z) =1/r = x°/[re(rt+z)°]

(xyZ)/[r°e(rez)] + (xyz)/[r2-(r+2)2)] = (xy)/r° - (xy)/[r-(r+z)2]

=8/2+1/(28) = pu+(1+48)/(A+u)
{5.16)

We find that the above resuit coincides with the published

results (e.g. Love 1927, page 242).

i) Case when the force is acting in the z direction:

- [1/4ﬂu(1+6>]-[

ex-[ —-(8x)/[2r(r+z)] + x/[28r (r+z)] v(xz)/r3 ]

~

>
+ ey-[ =(6-y)/[2r{r+z)]) + y/[26r:(r+z)] - (yz)/r" ]
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+ ez'[ ~6/(2r) - 1/(26r) - 22/P3]
(5.17)
Noting the identities in (5.16) concerning material
parameters, we find that the above result coincides with the

published results (e.g. Love 1827, page 191).

IV. Point force acting interior to a halfspace with a free surface.

The infinite space source potentials for this case are the
same as for case III. However, since h#0 in general, the matrix
operator involved in the algorithm (5.1) requires us to further
calculate in addition to the terms shown in case III, the foliowing

functions:

3 _[a 3 2 ] [,?o] a° [a 3 3 ] [§-0}
3z |dx Y z 1 3z ax’' Ay’ 3z 2
3 fa a 9 a? a? a%1. 70
3z|dx’ 3y’ 3z’ dxdz ' dydz’ az2 2

There are some repetition in the suggested functions to be
calculated since the partial differentiation operations are
commutative when the function is sufficiently smooth. Now we

perform the additional required differentiations:

8|
i

—F, [ 1/r3 - 3-x2/r5 ]/2
dz X

6
ft

—_ [-3-(xy)/r~5 }/2 (5.18)
dz Ay
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f FC = [ -3 (xz)/r"5 }/”
3z "ax
63 = 5
——3——$C = [ =~ {yz)/r ]/2 (5.19)
Az 3y
el
3 = 2 2 S
°PC = [ 1/r7 - 227 /0 ]/2
az"”

i) Case when the force is acting in the x direction:

Defining:

2 2
= X + y + (z+h)

We get after simplification and the use of +identities similar
to those given in (5.16), but with z replaced by (z+h) and "r*

replaced by ro wherever they occur:

286 + 1 - 2-(1+86) + (1+6)]/(r2+z+h)

s [-6/2 = 1/(26) - 1 + (146)1-x2/[r - (r +z+h)%]
[

2,02 3 2,5
+ xT/r, * 25h2-'1/f‘,’ - 3ex /r~2] ]
. o)
! ey'[ [-8/2 ~1/(28) = 1 = (148)3+ (xy)/[r - (ryvzeh)?]
> 3 2 5
+ (xy)/rl 4 28hz-[1/r2 - 2.x°/r2) ]
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~

+ ez-[ (-&6/2 +1/(26)]-x/[r2-(r2+z+h)]

+ (z—h)°X/Pg - 86hz-X°(Z+h)/”g ]

(5.20)

Noting that:

&§/[4np-(1+6)] = 1/[16mu-(1-v)]
1/6 = 3-4v (5.21)
-8/2+1/(28) = 48 -(1-v)-(1-2u)

We find that the above result (5.20) coincides with the
solution first obtained by Mindlin (1936) and shown in Mura (1882).

ii) Case when the force is acting in the z direction:
After simplifications we get:

0
u=u

+ [1/4ﬂp(1+6)]-[
;x.[ + [8/2 =~ 1/(26)]-x/[r2-(r2+z+h)]

+ (z—h)-x/rg + 66hz-x-(z+h)/r2 ]

+ ;y.{ [86/2 ~1/(26)]-y/[h2-(r2+z+h)]
+ (z—h)-y/rg + 66hz-y-(z+h)/r2] ]

~

+ ez-[ [6/2 +1/(26)]/r2

+ [(z+h)? - 26hz)/r2 + 68hz- (z+h)°/r] ]

(5.22)

Noting the relations given in (5.21) and:
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6/2+1/(286) = 6-[8'(1—U)2 - (3-4v)] (5.23)

We find that the above result (5.22) coincides with the
solution first obtained by Mindlin (1936) and shown in Mura (1982).
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Fi re Captions

figure 1:
2 bonded elastic halfspaces with a point source at z=h.

figure 2:

An elastic plate of thickness H perfectly bonded to two
elastic halfspaces, with a point source in region 1 (the elastic
plate).

figure 3:

Location of the point source and image point sources for the
elastic field in region 1 (left series of points) and region 2
(right series of points) when the point source is located in region
1 (the elastic plate).

figure 4:
Location of the point source and image point sources for the
elastic field in region 1 (left series of points) and region 2

(right series of points) when the point source is located in region
2 (the lower halfspace).

figure 3.1:
2 bonded elastic halfspaces with a point source at z=-h.
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